

The unit vector in the direction of a given vector:

IF $\vec{A} = (A_x, A_y, A_z) \in \mathbb{R}^3$ Then the unit vector in the direction of \vec{A} is denoted by \vec{U}_A , and given by the relation: $\overrightarrow{U_A} = \frac{\overrightarrow{A}}{||\overrightarrow{A}||}$ $\|\vec{A}\|$

The direction angles and direction cosines of a vector in space IF $\overline{A} = (A_x, A_y, A_z)$ is a vector in space and IF($\theta_x, \theta_y, \theta_z$) are measures of the angles that the vector makes with the position direction of (x,y,z) axes respectively $A_x = ||\vec{A}|| \cos \theta_x$, $A_y = ||\vec{A}|| \cos \theta_y$, $A_z = ||\vec{A}|| \cos \theta_z$ $\vec{A} = (A_x, A_y, A_z) = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} = ||\vec{A}|| \cos \theta_x \hat{i} + ||\vec{A}|| \cos \theta_y \hat{j} + ||\vec{A}|| \cos \theta_z \hat{k}$ $= ||\vec{A}|| (\cos \theta_x \hat{i} + ||\vec{A}|| \cos \theta_y \hat{j} + ||\vec{A}|| \cos \theta_z \hat{k})$ $(\theta_x, \theta_y, \theta_z)$ are direction angles of vector \vec{A} (cos θ_x , cos θ_y , cos θ_z) are direction cosines of vector \overline{A}

Remark

The unit vector in direction of \overline{A} is $\overline{U_A}$ = cos θ_x *î* + cos θ_y *ĵ* + cos θ_z \hat{k} = (cos θ_x , cos θ_y , cos θ_z) $\|\overline{U_A}\| = \sqrt{\cos^2\theta_x + \cos^2\theta_y + \cos^2\theta_z} = 1$ Where : $\cos^2 \theta_x + \cos^2 \theta_y + \cos^2 \theta_z = 1$

The opposite figure represents the vector \overline{A} whose norm is 10 units. (a) Express the vector A by algebraic form (cartesian components). (b) Find measure of direction angles of vector \overline{A} .

(a) First resolve the vector \overline{A} into two components: The first in the direction of \overline{OZ} and its magnitude $A_z = ||\overline{A}|| \cos \theta_z = 10 \cos 40 = 7.66$

The second lies in the coordinate plane *xy*: $A_{xy} = ||\overline{A}|| \sin \theta_z = 10 \sin 40 = 6.428$ Now resolve the component A*xy* into two components: The first in the direction of \overline{OX} and its magnitude A_x $A_x = A_{xy} \cos 70 = 6.428 \cos 70 = 2.199$ The second in the direction of \overline{OY} and its magnitude A_y $A_y = A_{xy} \sin 70 = 6.428 \sin 70 = 6.04$ $\bar{A} = (A_x, A_y, A_z) = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} = (2.199, 6.04, 7.66)$ \bar{A} (2.199 6.04 7.66

(b)
$$
\overline{U_A} = \frac{A}{\|\overline{A}\|} = \left(\frac{2.199}{10}, \frac{6.04}{10}, \frac{7.66}{10}\right)
$$

 $\cos \theta_x =$ 2.199 10 , ∴ θ*^x* = 77°17*'*49*"* cos θ*^y* = 6.04 10 , ∴ θ*^y* = 52°50*'* 35*''*

$$
\cos \theta_z = \frac{7.66}{10}
$$
, $\therefore \theta_z = 70$, $0, = 40^{\circ}14''$

The opposite figure represents a force \bar{F} of magnitude 200N (a) Express the force \bar{F} in the algebraic form. (b) Find the measure of the direction angles of the force \bar{F} .

a)
$$
\vec{f} = (f \cos \theta \sin \varphi, f \cos \theta \cos \varphi, f \sin \theta)
$$

\n $\vec{f} = (200 \times \frac{5}{4\sqrt{2}} \times \frac{3}{5}, 200 \times \frac{5}{4\sqrt{2}} \times \frac{4}{5}, 200 \times \frac{5}{4\sqrt{2}})$
\n $\vec{f} = (60\sqrt{2}, 80\sqrt{2}, 100\sqrt{2}) \longrightarrow \vec{f} = 60\sqrt{2} \hat{i} + 80\sqrt{2} \hat{j}, 100\sqrt{2} \hat{k}$

b)
$$
\|\vec{f}\| = \sqrt{f_x^2 + f_y^2 + f_z^2} = \sqrt{(60\sqrt{2})^2 + (80\sqrt{2})^2 + (100\sqrt{2})^2} = 200
$$

\ncos $\theta_x = \frac{f_x}{\|\vec{f}\|} = \frac{60\sqrt{2}}{200} \longrightarrow \theta_x = 64^\circ 53' 45''$
\ncos $\theta_y = \frac{f_x}{\|\vec{f}\|} = \frac{80\sqrt{2}}{200} \longrightarrow \theta_x = 55^\circ 33'$
\ncos $\theta_z = \frac{f_x}{\|\vec{f}\|} = \frac{100\sqrt{2}}{200} \longrightarrow \theta_z = 45^\circ$

S.B.2017 2) if $\vec{A} = (1, -3, 2)$ and $\vec{B} = (0, 2, 3)$ find $\|\vec{A}\|$ and $\|\vec{A} + \vec{B}\|$ [$\sqrt{14}, 3\sqrt{3}$]

S.B.2017 $\begin{bmatrix} 3 \end{bmatrix}$ A = (- 2, 3, 5) and B = (1, 4, - 2), find \overrightarrow{AB} [(3, 1, - 7)]

S.B.2017 $\begin{vmatrix} 4 \end{vmatrix}$ if $\vec{C} = (1, -2, 2)$, find the unit vector in the direction of \vec{C} 1 $\frac{1}{3}, \frac{-2}{3}$ $\frac{2}{3}, \frac{2}{3}$ $\frac{2}{3}$

 $S.B.2017$ 5) If the vector A makes with the positive direction of the coordinate axes *x*, y and z angles of measure $60^{\circ} 80^{\circ}$ and θ , where θ is an acute angle, (a) Find the measure of θ . [31.96[°]] (b) Find if \vec{A} if $\|\vec{A}\| = 13$ [6.5 $\hat{i} + 2.26 \hat{j} + 11.03 \hat{k}$]

 $S.B.2017$ 6) If the tension force in a string equals 21 Newton, Find the components of the force \vec{F} . $\sqrt{k^n}$ [(14, -7, -14)]

S.B.2017 7) Find the vector \vec{A} whose norm is 21 $\sqrt{3}$ and makes equal angles with the positive directions of the coordinate axes. $[\pm 21 (\hat{i} + \hat{j} + \hat{k})]$

S.B.2017 \vert 8) Use the opposite figure to find the components of the force F whose magnitude is 12 $\sqrt{29}$ Newton in the direction of the coordinate axes. [(-24, 48,36)]

S.B.2017 9) Find the direction angles of the vector \vec{C} 3 \hat{i} - 4 \hat{j} + 5 \hat{k} with the positive direction of the coordinate axes. [64.9°, 124.48°, 45°]

(a) 100° (b) 80° (c) 260° (d) 68.61°

Complete the following:

4

Vector Multiplication

There are two kinds of vectors multiplication :

(1) The scalar product (the dot product)

The vector product (the cross product)

Scalar product of two vectors (Dot Product)

* If \vec{A} , \vec{B} are two vectors the measure of the minor angles between them

is θ the scalar product of the two vectors \vec{A} , \vec{B} is \vec{A} , \vec{B}

 $\vec{A} \cdot \vec{B} = ||\vec{A}|| \times ||\vec{B}|| \cos \theta \rightarrow \vec{A} \cdot \vec{B} = AB \cos \theta$

* The absolute value of the scalar product equals the area of the rectangle whose dimensions are the norm of one of the two vectors

 $(\Vert \vec{B} \Vert)$ and the component of the other on it $(\Vert \vec{A} \Vert \cos \theta)$ *Properties of scalar product :*

1) Commutative property : $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$

$$
2) \vec{A} \cdot \vec{A} = ||\vec{A}||^2
$$

3) $\vec{A} \cdot \vec{B}$ = zero if and only if \vec{A} | \vec{B}

4) Distributive property: \vec{A} . ($\vec{B} + \vec{C}$) = $\vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$

5) If K is a scalar (real number) then, $(K\vec{A}) \cdot \vec{B} = \vec{A}$ (k \vec{B}) = k ($\vec{A} \cdot \vec{B}$)

Remark

1) The two vectors must be outwards of the same point or inwards to the same point

 $2) \theta \in [0, \pi]$

EXAMPLE
\nIf
$$
||\vec{A}|| = 2 ||\vec{B}|| = 8
$$
, $\theta = 60^{\circ}$, Find $\vec{A} \cdot \vec{B}$
\nS
\nC
\nC
\nC
\nC
\nC
\nD
\nD
\n $|\vec{A}|| = 8$, & 2 $||\vec{B}|| = 8 \rightarrow ||\vec{B}|| = 4 \rightarrow \vec{A} \cdot \vec{B} = AB \cos \theta = 8 \times 4 \times \cos 60 = 16$

2 (b) $\overrightarrow{AB} \cdot \overrightarrow{BC} = -(\overrightarrow{BA} \cdot \overrightarrow{BC}) = -(\overrightarrow{||BA||} \cdot \overrightarrow{||BC||} \cos 60) = -10 \times 10 \times \cos 60 = -50$ (c) $2(\overrightarrow{AB})$. $3(\overrightarrow{BC}) = 6(\overrightarrow{AB}, \overrightarrow{BC}) = 6 \times -50 = -300$

The scalar product of two vectors in orthogonal coordinate system, If $\overline{A} = (A_x, A_y, A_z)$, $\overline{B} = (B_x, B_y, B_z)$, then $\overline{A} \cdot \overline{B} = (A_x, A_y, A_z)$. (B_x, B_y, B_z) $\overline{A} \cdot \overline{B} = A_x B_x + A_y B_y + A_z B_z$

Let $\vec{A} = (A_x, A_y, A_z)$ ∴ $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ $\vec{B} = (\text{B}_x, \text{B}_y, \text{B}_z)$: $\vec{B} = \text{B}_x \hat{\imath} + \text{B}_y \hat{\jmath} + \text{B}_z \hat{k}$ $\vec{A}.\ \vec{B} = (A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k})$. $(B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k})$ Since $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1 \rightarrow \hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$ $\therefore \vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$

Remark

If
$$
\vec{A} = (A_x A_y)
$$
, $\vec{B} = (B_x, B_y) \rightarrow \vec{A}$. $\vec{B} = (A_x A_y)$. (B_x, B_y)
 $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y$

find \overrightarrow{A} . \overrightarrow{B} in each of the following : a) $\vec{A} = (-1, 3, 2)$, $\vec{B} = (4, -2, 5)$ and what do you deduce ? b) $\vec{A} = (2, -1)$, $\vec{B} = (-3, 1)$ SOLUTION

a) \overrightarrow{A} . \overrightarrow{B} = (-1, 3, 2). (4, -2, 5) $\rightarrow \overrightarrow{A}$. \overrightarrow{B} = -4 – 6 + 10 = zero $\rightarrow \overrightarrow{A}$ \perp \overrightarrow{B} b) \overline{A} . $\overline{B} = (2, -1)$. (-3, 1) = -6 – 1 = -7

** The angle between two vector :* $\overline{A} \cdot \overline{B} = ||\overline{A}|| \cdot ||\overline{B}|| \cos \theta$ θ : is the measure of the minor angle between the two non zeros vectors \vec{A} , \vec{B} where $\theta \in [0, \pi] \cos \theta =$

Special cases :

- (1) if $\cos \theta = 1$ then \vec{A} // \vec{B} in the same direction
- (2) if $\cos \theta = -1$ then \vec{A} // \vec{B} in the opposite direction
- (3) if $\cos \theta = \text{zero}$, then $\vec{A} \perp \vec{B}$

Component (projection) of a vector in a direction of another vector. * If \vec{A} , \vec{B} are two vectors then the component (projection) of vector \vec{A} in direction vector \vec{B} (denoted by A_B). $A_B = ||\vec{A}|| \cos \theta \rightarrow A_B = \frac{\vec{A} \cdot \vec{B}}{||\vec{B}||}$ $\|\vec{B}\|$

The component of a vector in a direction of another vector vanishes

a) if the two vectors are perpendicular ($\theta = 90^{\circ}$)

b) if one or both of the two vectors is the zero vector \vec{O}

Using the scalar product to find the work done by a force:

* If a force acted on a body and moved it a displacement S then we say the force exerted a work. The work is given by the relation

 $W = \vec{F} \cdot \vec{S} \rightarrow W = ||\vec{F}|| ||\vec{S}|| \cos \theta \rightarrow W = F S \cos \theta$

unit of measuring the work = units of force \times unit of displacement.

The force $\vec{F} = \hat{i} - 2 \hat{j} + 3 \hat{k}$ Newton acts upon a body and moved from the point A $(-3,1, 0)$ to the point B $(2,0, -2)$ Find the work done by the force \vec{f} where the displacement is measured by meter.

 $\vec{S} = \vec{AB} \rightarrow \vec{S} = \vec{B} \cdot \vec{A} \rightarrow \vec{S} = (2,0,-2) - (-3,1,0) = (5,-1,-2)$ $W = \vec{F} \cdot \vec{S} \rightarrow W = (1, -2, 3), (5, -1, -2) = 5 + 2 - 6 = 1$ N.m = 1 Joule

SCILUTION

In the opposite figure :

A man draw a box by a tension force with magnitude 160 newton and inclines to the horizontal at angle whose tangent is 3 4 to move it horizontally a distance 5m. find the work done by this force.

Work = $\vec{F} \cdot \vec{S}$ W = $\|\vec{F}\| \|\vec{S}\| \cos \theta$ $W = 160 \times 5 \times$ 4 5 $= 640$ joule

In the opposite figure: A man lift a box by a string passing over a smooth pulley and inclines to the vertical at angle of measure 30°. If the tension at the string equal 120 newton to raise the box a distance 3 meters from the ground surface. Find the work done by the tension force.

SOLUTION Work = $\vec{T} \cdot \vec{S}$ $W = ||\vec{T}|| ||\vec{S}|| \cos\theta$ $W = 120 \times 3 \times \cos 150 = .311.78$ joule

The Vector Product

(cross product) of two vectors

If \vec{A} , \vec{B} are two non zero vectors in a plane including an angle of measure. Then $\vec{A} \times$ $\vec{B} = (||\vec{A}|| ||\vec{B}|| \sin \theta) \hat{c}$

 \hat{c} : is a unit vector perpendicular to the plane containing \overline{A} , \overline{B} .

Right Hand Rule:

The direction of the unit vector ĉ is defined (up or down) according to the right hand rule where the curved fingers of the right hand show the direction of the relation from \vec{A} to \vec{B} , then the thumb shows the direction of the vector ĉ.

Remark

1) $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$ by applying the right hand rule.

2) For any vector
$$
\vec{A}
$$
, $\vec{A} \times \vec{A} = \vec{0}$

3) By applying the right hand rule on the set of orthogonal unit vectors then

$$
\hat{\imath} \times \hat{\jmath} = \hat{k}, \hat{\jmath} \times \hat{k} = \hat{\imath}, \hat{k} \times \hat{\imath} = \hat{\jmath}, \hat{\imath} \times \hat{k} = -\hat{\jmath}, \hat{k} \times \hat{\jmath} = -\hat{\imath}, \hat{\jmath} \times \hat{\imath} = -\hat{k}
$$

The cross product in the cartesian coordinate

* if
$$
\vec{A} = (A_x, A_y, A_z), \vec{B} = (B_x, B_y, B_z)
$$
, then
\n
$$
\vec{A} \times \vec{B} = (A_x \hat{i} + A_y + A_z \hat{k}) \cdot (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})
$$
\n
$$
= (A_x B_z - A_z B_y) \hat{i} - (A_x B_z - B_x A_z) \hat{j} + (A_x B_y - A_y B_x) \hat{k}
$$
\n
$$
\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_z & B_y & B_z \end{vmatrix} = (A_x B_z - A_z B_y) \hat{i} - (A_x B_z - B_x A_z) \hat{j} + (A_x B_y - A_y B_x) \hat{k}
$$
\nIf $\vec{A} = (A_x, A_y), \vec{B} = (B_x, B_y) \therefore \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & 0 \\ B_x & B_y & 0 \end{vmatrix} = (A_x B_y - A_y B_x) \hat{k}$
\n**EXAMPLE1**
\nIf $\vec{A} (= 2, 3, 1), \vec{B} = (1, 2, 4), \text{ find } \vec{A} \times \vec{B} \text{ then deduce the unit vector perpendicular to the plane containing the two vectors } \vec{A}, \vec{B}$
\n**EXAMPLE2**
\n**EXAMPLE3**
\n**EXAMPLE4**
\n**EXAMPLE5**
\n**EXAMPLE6**
\n**EXAMPLE7**
\n**EXAMPLE8**
\n**EXAMPLE9**
\n**EXAMPLE1**
\n**EXAMPLE1**
\n**EXAMPLE1**
\n**EXAMPLE2**
\n**EXAMPLE3**
\n**EXAMPLE4**
\n**EXAMPLE5**
\n**EXAMPLE9**
\n**EXAMPLE1**
\n**EXAMPLE1**
\n**EXAMPLE1**
\n**EXAMPLE2**
\n**EXAMPLE3**
\n**EXAMPLE4**
\n**EXAMPLE5**
\n**EXAMPLE9**
\n**EXAMPLE1**
\n**EXAMPLE1**
\n**EXAMPLE1**
\n**EXAMPLE2**
\n**EXAMPLE3**

EXAMPLE1
\n**EXAMPLE1**
\n**REVALUATE:** If
$$
||\vec{A}|| = 6
$$
 and the direction cosines of vector \vec{A} are
\nRespectively $\frac{2}{3}$, $-\frac{2}{3}$, $\frac{1}{3}$ and the vector $\vec{B} = (-2, 3, 5)$, find $\vec{A} \times \vec{B}$
\n $\vec{A} = (A \cos \theta_x, A \cos \theta_y, A \cos \theta_z) = (6 \times \frac{2}{3}, 6 \times \frac{2}{3}, 6 \times \frac{1}{3}) = (4, -4, 2)$
\n $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -4 & 2 \\ -3 & 3 & 5 \end{vmatrix} = -26\hat{i} - 24\hat{j} + 4\hat{k}$

Properties of cross product:

* If \vec{A} , \vec{B} are two vectors, the measure of the angle between them is θ then 1) $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$ (not commutative) 2) $\vec{A} \times \vec{A} = \vec{B} \times \vec{B} = \vec{0}$ 3) If $\vec{A} \times \vec{B} = \vec{0}$ then : \vec{A} // \vec{B} or one of the two vectors equal $\vec{0}$ 4) $\vec{A} \times (\vec{B} + \vec{C}) = (\vec{A} \times \vec{B}) + (\vec{A} \times \vec{C})$ (distributive property) 5) $(K\vec{A}) \times \vec{B} = \vec{A} \times (K\vec{B}) = K(\vec{A} \times \vec{B})$, where K is a scalar (real number) *** Parallelism of two vectors: \vec{A} // \vec{B} (\longleftrightarrow) $\vec{A} \times \vec{B} = \vec{0}$ $(A_y B_z - A_z B_y) \hat{i} - (A_x B_z - B_x A_y) \hat{j} + (A_x B_y - A_y B_x) \hat{k} = \vec{0}$ A_{y} A_{Z} A_x A_{Z} $A_y B_z = A_z B_y \rightarrow$ = $\rightarrow A_x B_z = B_x A_z \rightarrow$ = B_{y} B_{Z} B_{χ} B_{Z} $\frac{1}{4}$ sin i A_{y} A_{y} A_x A_x A_{Z} $A_x B_y = A_y B_x \rightarrow$ = \rightarrow \therefore = = B_{χ} B_{y} B_{χ} B_{y} B_{Z} A_{y} A_{χ} A_{Z} $\rightarrow A_x = K B_x$, $A_y = K B_y' = A_z = K B_z$ Let = = B_{χ} B_{y} B_{Z} $\vec{A} = (A_x, A_y, A_z)$, $A = (KB_x, KB_y, KB_z), \vec{A} = K (B_x, B_y, B_z), \vec{A} = K (B \rightarrow \vec{A} \text{ // } \vec{B}$ 1) \vec{A} // \vec{B} in same direction if K > 0 2) \vec{A} // \vec{B} in opposite direction if K< 0

if $\vec{A} = (2, -3, m)$ is parallel to the vector $\vec{B} = (1, n, 8)$ EXAMPLE! find the values of m,n. $(21)(3)$ SOLUTION A_{y} \vec{A} // \vec{B} \rightarrow $\frac{A_x}{B}$ A_{Z} = = B_{x} B_{y} B_{Z} 2 3 \boldsymbol{m} 3 3 $= -$ = \longrightarrow - $= 2 \rightarrow n = -$ 1 \boldsymbol{n} 8 \boldsymbol{n} 2 \boldsymbol{m} $= 2 \rightarrow m = 16$ 8

** The geometric meaning of the cross product of two vectors*

 $\|\vec{A} \times \vec{B}\| = \|\vec{A}\| \|\vec{B}\| \sin \theta = \|\vec{B}\| \times L$ (where $L = \|\vec{A}\| \sin \theta$)

= Area of parallelogram where \vec{A} , \vec{B} two adjacent sides in it = twice area of triangle in which \overline{A} , \overline{B} two adjacent sides in it.

EXAMPLE
\nIf
$$
\vec{A} = (-3,1,2)
$$
, $\vec{B} = (3,4,-1)$ Find the area of parallelogram in which \vec{A} ,
\n
$$
\vec{B}
$$
 are two adjacent sides in it.
\nS
\n
$$
\vec{A} \times \vec{B} = (-3,1,2) \times (3,4,-1) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3 & 1 & 2 \\ 3 & 4 & -1 \end{vmatrix}
$$
\n
$$
= (-1-8) \hat{i} - (3-6) \hat{j} + (-12-3) \hat{k} \rightarrow \vec{A} \times \vec{B} = -9 \hat{i} + 3 \hat{j} - 15 \hat{k}
$$
\n
$$
\|\vec{A} \times \vec{B}\| = \sqrt{9^2 + 3^2 + 15^2} = 3\sqrt{35} \text{ sq.u} \rightarrow \text{Area of parallelogram} = 3\sqrt{35} \text{ sq.u}
$$

The scalar triple product:

If \vec{A} , \vec{B} , \vec{C} are three vectors Then $\vec{A} \cdot \vec{B} \times \vec{C}$ is known as the scalar triple product The expression $\vec{A} \cdot \vec{B} \times \vec{C}$ has no brackets where doing the scalar

Product first is meaningless Let $\vec{A} = (A_x, A_y, A_z), \vec{B} = (B_x, B_y, B_z), \vec{C} = (C_x, C_y, C_z)$ Then $\vec{A} \cdot \vec{B} \times \vec{C} = \vec{A} \cdot |\vec{A}|$ $\hat{\imath}$ $\hat{\jmath}$ \hat{k} B_x B_y B_z C_x C_y C_z | $= \vec{A}$. $[(B_y C_z - C_y B_z) \hat{i} - (B_x C_z - C_x B_z) \hat{j} + (B_x C_y - C_x B_y) \hat{k}]$ $= A_x (B_y C_z - C_y B_z) - A_y (B_x C_z - C_x B_z) + A_z (B_x C_y - C_x B_y)$ \vec{A} . $\vec{B} \times \vec{C} =$ | A_x A_y A_z B_x B_y B_z C_x C_y C_z |

Properties of the scalar triple product

 $\vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{B} \cdot (\vec{C} \times \vec{A}) = \vec{C} \cdot (\vec{A} \times \vec{B})$

The value of the scalar triple product doesn't change if the vectors in the same cyclic order

The geometric meaning of the scalar triple product

If \vec{A} , \vec{B} , \vec{C} are three vectors and form three non parallel sides of parallelepiped then the volume of parallelepiped $=$ the absolute value of the scalar triple product The volume of parallelepiped = $|\vec{A} \cdot \vec{B} \times \vec{C}|$

Find the volume of the parallelepiped in which three non parallel edges are represented by the vectors $\vec{A} = (3,-4,1) \vec{B} = (0,2,-3), \vec{C} = (3,2,2)$ \vec{A} . $(\vec{B} \times \vec{C}) =$ 2 1 3 − 1 3 2 $1 \quad 1 \quad -2$ \vert = 3 (4 + 6) + 4 (0 + 9) + 1(0 - 6) = 30 + 36 - 6 = 60 Volume = $|\vec{A} \cdot \vec{B} \times \vec{C}|$ 60 Cubic unit

Answer the following:

