Three-dimensional orthogonal coordinate system

If A (x_1, y_1, z_1) and B (x_2, y_2, z_2) are two points in space, then

The distance between two points is AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ The coordinates of the mid-point of $\overline{AB} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$

- (d) the distance between the point (-2, 3, 4) and x-axis = $\sqrt{(3)^2 + (4)^2} = 5$ (e) the distance between the point (-2, 3, 4) and y-axis = $\sqrt{(-2)^2 + (4)^2} = 2\sqrt{5}$
- (f) the distance between the point (-2, 3, 4) and z-axis = $\sqrt{(-2)^2 + (3)^2} = \sqrt{13}$

SOLUTION

The opposite figure represents a cuboid in an orthogonal system. two of the vertices of the cuboid are O (0, 0, 0) and A (5, 8, 4), find the coordinates of each of the following points B, C, D, E.

- B (5, 8, 0) C (0, 0, 4)
- D (5, 0, 4)
- E (0, 8, 4)

Complete

(a) the two straight lines $\overleftarrow{x} \overrightarrow{x}$ and $\overleftarrow{y} \overrightarrow{y}$ 'determine the ... plane whose equation is ...

- (b) the two straight lines $\forall y \dot{y}$ ' and $\forall z \ddot{z}$ 'determine the coordinate plane whose equation is
- (c) the x z and y z planes intersect in
- (d) the coordinate planes x y and y z intersect in ...
- (e) if the point $(x, y, z) \in y z$ plane , then x = ...
- (f) the point (0, 5, -3) lies in ... plane whose equation is

(g) the point (0, 3, 0) lies on ... axis and the point (0, 0, 4) lies on ... axis

(h) the point (2, 0, -3) lies in ... plane and the point (1, -3, 0) lies in ... plane

(i) the distance between the point (-3, 2, 5) and y z plane equals \dots Units of length

(j) the length of the perpendicular segment drawn from the point (8, 6, -

4) to z-axis = Unit of length

(k) the projection of the point (-1, 2, 3) on x-axis is the point And its projection on y z plane is the point

(a) x y plane , z = 0
(c) z-axis
(e) x = 0
(g) y-axis, z-axis
(i) 3
(k) (-1, 0, 0), (0, 2, 3)

(b) y z plane , x = 0
(d) y-axis
(f) y z plane, x = 0
(h) x z plane, x y plane
(j) 10

Find the value (s) of a if the point
$$(x, a^2 - 4, a - 2)$$

i) lies on x-axis
ii) lies on x z plane
i) $\therefore a^2 - 4 = 0$ and $a - 2 = 0$
 $\therefore a^2 = 4$ $a = 2$
ii) $\therefore a^2 - 4 = 0$
 $\therefore a = \pm 2$
ii) $\therefore a^2 - 4 = 0$
 $\therefore a = \pm 2$
ii) $\therefore a^2 - 4 = 0$
 $\therefore a = 2$
ii) $\therefore a^2 - 4 = 0$
 $\therefore a = 2$

Find the coordinates of the point (a) A (1 - k, 2k, 3 + k) where A \in xy plane (b) B (2 + m, 3 - m, m) where B \in xz plane (c) C (0, n + 5, n - 4) where C \in z -axis (d) D (3 ℓ , ℓ + 3, 5 ℓ) where D \in y-axis (e) E $(\ell + 5, 2 \ell,)$ which is far from x-axis by $2\sqrt{5}$ units (f) F (2 + k, 4k, -k) if its distance from yz plane is 5 units SOLUTION (a) A $(1 - k, 2k, 3 + k) \in xy$ plane $\Rightarrow z = 0 \Rightarrow 3 + k = 0 \Rightarrow k = -3$ $\therefore A = (4, -6, 0)$ (b) B (2 + m, 3 - m, m) \in xz plane \Rightarrow y = 0 \Rightarrow 3 - m = 0 \Rightarrow m = 3 \therefore B = (5, 0, 3) (c) C (0, n + 5, n - 4) \in z-axis \Rightarrow x = 0 and y = 0 \Rightarrow n + 5 = 0 \Rightarrow n = -5 \therefore C = (0, 0, -9) (d) D (3 ℓ , ℓ + 3, 5 ℓ) \in y-axis \Rightarrow x = 0 and z = 0 \Rightarrow 3 ℓ = 5 ℓ = 0 \Rightarrow ℓ = 0 \therefore D = (0, 3, 0) (e) E $(\ell + 5, 2 \ell,)$ is far from x-axis by $2\sqrt{5} \Rightarrow \sqrt{(2\ell)^2 + \ell^2} = 2\sqrt{5}$ $\Rightarrow |\ell| \sqrt{5} = 2\sqrt{5}$ $\Rightarrow \ell = \pm 2$ \therefore E = (7, 4, 2) or E = (3, -4, -2) (f) : F (2 + k, 4k, -k) is far from yz plane by 5 units |x| = 5 $\Rightarrow |2+k| = 5$ 2 + k = 5or 2 + k = -5k = -7 \therefore k = 3 ∴ F (5, 12, - 3) F (- 5, - 28, 7)

Consider the three points A B C and AB, BC and AC are the lengths of the segments \overline{AB} , \overline{BC} and \overline{AC} respectively.

* if the sum of the lengths of two segments = the length of the third segment, then A, B, C are collinear.

* if the sum of the lengths of two segments > the length of the third segment, then ABC is a triangle, and if AC (say) is the length of the greatest side, then

 $(AC)^2 = (AB)^2 + (BC)^2 \implies \hat{B} \text{ is right.}$ $(AC)^2 > (AB)^2 + (BC)^2 \implies \hat{B}$ is obtuse. $(AC)^2 < (AB)^2 + (BC)^2 \implies \hat{B}$ is acute.

S.B. 2017

Prove that the points A (4, 4, 0), B (4, 0, 4) and C (0, 4, 4) are the vertices of an equilateral triangle and find its area.

SOLUTÍON

 $AB = \sqrt{(4 - 4)^2 + (4 - 0)^2 + (0 - 4)^2} = 4\sqrt{2}$ BC = $\sqrt{(4 - 0)^2 + (0 - 4)^2 + (4 - 4)^2} = 4\sqrt{2}$ AC = $\sqrt{(4 - 0)^2 + (4 - 4)^2 + (0 - 4)^2} = 4\sqrt{2}$ \therefore AB = BC = AC \therefore \triangle ABC is an equilateral triangle Area of \triangle ABC = $\frac{1}{2}$ (AB) (BC) sin 60 = $\frac{1}{2} \times 4\sqrt{2} \times 4\sqrt{2} \times \frac{\sqrt{3}}{2}$ = $8\sqrt{3}$ units of area

S.B. 2017 Prove that the triangle ABC where A (2, -1, 3), B (-4, 4, 2) and C (-2, 5, 1) is right angled at C.

$$(AB)^{2} = (2 + 4)^{2} + (-1 - 4)^{2} + (3 - 2)^{2} = 62$$

$$(BC)^{2} = (-4 + 2)^{2} + (4 - 5)^{2} + (2 - 1)^{2} = 6$$

$$(AC)^{2} = (2 + 2)^{2} + (-1 - 5)^{2} + (3 - 1)^{2} = 56$$

$$\therefore (AB)^{2} = 62 \text{ and } (BC)^{2} + (AC)^{2} = 6 + 56 = 62$$

That is $(AB)^{2} = (BC)^{2} + (AC)^{2}$

$$\therefore m(\hat{C}) = 90$$

S.B. 2017 Find the point on y-axis equidistant from the points A (2, 5, - 3), B (- 3, 6, 1)

Let the point A (2, 5, - 3), B (- 3, 6, 1) and a point C (0, y, 0) on the y-axis C (0, y, 0) be a point on y-axis $\therefore CA = CB$ $\therefore \sqrt{(0-2)^2 + (y-5)^2 + (0+3)^2} = \sqrt{(0+3)^2 + (y-6)^2 + (0-1)^2}$ $\therefore \sqrt{13 + (y-5)^2} = \sqrt{10 + (y-6)^2}$ $\therefore 13 + (y-5)^2 = 10 + (y-6)^2$ $\therefore 13 + y^2 - 10 y + 25 = 10 + y^2 - 12 y + 36$ $\therefore 38 - 10 y = 46 - 12 y$ $\therefore 2y = 8$ $\therefore y = 4$ \therefore the required point is C (0, 4, 0)

Let the point B (x, y, z) \therefore C is the mid-point of \overline{AB} \therefore (2, 2, 6) = $\left(\frac{x+1}{2}, \frac{y-4}{2}, \frac{z+0}{2}\right)$

$$\begin{array}{c} 5) = \left(\begin{array}{c} \hline 2 \\ \hline 2$$

If C (-1, 6, -5) is the mid-point of \overline{AB} where A (k - 2, -1, m+3), of the point B (2, n - 7, -2), find the value of k + n - m

C is a mid-point of AB $∴ (-1, 6, -5) = <math>\left(\frac{k-2+2}{2}, \frac{n-7-1}{2}, \frac{m+3-2}{2}\right)$ $\frac{k}{2} = -1$ k = -2 n - 8 = 12 m + 1 = -10 m = -11

 \therefore k + n - m = - 2 + 20 + 11 = 29

The sphere

The sphere is defined as the set of point in space which are equidistant from fixed point (the center of the sphere), the distance between the center and any point of the sphere is called the radius of the sphere.

The standard from of the equation of a sphere If the point (x, y, z) lies on the sphere of center (ℓ, k, n) and radius r, then $r = \sqrt{(x - \ell)^2 + (y - k)^2 + (z - n)^2}$ squaring both sides, we get $(x - \ell)^2 + (y - k)^2 + (z - n)^2 = r^2$ The general equation of the sphere

$$x^{2} + y^{2} + z^{2} + 2 \ell x + 2 k y + 2 n z + d = 0$$

where
$$= \ell^2 + k^2 + n^2 - r^2$$

This equation represents a sphere whose center is $\left(\frac{coeff.of x}{-2}, \frac{coeff.of y}{-2}, \frac{coeff.of z}{-2}\right)$ and radius $r = \sqrt{\ell^2 + k^2 + n^2 - d}$ where $\ell^2 + k^2 + n^2 > d$

Remark

(1) If the spere of center (ℓ, k, n) touches $\begin{cases} xy \ palnc, then \ r = \ |n| \\ xz \ palnc, then \ r = \ |k| \\ zy \ palnc, then \ r = \ |\ell| \end{cases}$

(2) if the sphere touches the cartesian planes and the coordinates of its center are all positive numbers, then the coordinates of its center are (r, r, r)

(3) if the sphere touches the cartesian axes and the coordinates of its center are all positive numbers, then the coordinates of its center are $\left(\frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}}\right)$

(4) the cross section of a sphere with a plane is a circle.

S.B. 2017

Find the standard from of the equation of the sphere

- (a) whose center is (2, -1, 4) and its radius is 3 units .
- (b) whose center is the origin and its radius is 5 units.
- (c) in which A (-1, 5, 4) and B (5, 1 -2) are the end point of a diameter.

(a) the standard form of the equation of the sphere is

$$(x-2)^2 + (y+1)^2 + (z-4)^2 = 9$$

(b) the equation of the sphere is $x^2 + y^2 + z^2 = 25$
(c) the center of the sphere is the mid-point of $\overline{AB} = \left(\frac{-1+5}{2}, \frac{5+1}{2}, \frac{4-2}{2}\right) = (2, 3, 1)$
 $\therefore r = \sqrt{(2 + 1)^2 + (3 - 5)^2 + (1 - 4)^2} = \sqrt{22}$
 \therefore the equation of the sphere is $(x - 2)^2 + (y - 3)^2 + (z - 1)^2 = 22$
S.B. 2017

IN NADI EL	5.D. 2017	0 11 1 1
EXAMINE	Find the center and the radius of each of the	e following spheres
	(a) $x^2 + y^2 + z^2 + 4x - 2y - 6z + 11 = 0$	
(14)	(b) $x^2 + y^2 + z^2 = 6 z$	
	(c) $x^2 + y^2 + z^2 - 2x + 4y = 0$	
	(d) $3x^2 + 3y^2 + 3z^2 - 3x - 9y = 6z + 3 = 0$	
	SCLUTICN	
(a) the center	r is (-2, 1, 3)	
\therefore r = $\sqrt{(-2)}$	$)^2 + (1)^2 + (3)^2 - 11 = \sqrt{3}$	
(b) the center	r is (0, 0, 3)	
\therefore r = $\sqrt{0 + 0}$	$\overline{0 + 9 - 0} = 3$	
(c) the center	is (1, -2, 0)	
\therefore r = $\sqrt{(1)^2}$	$+ (-2)^2 + (0)^2 - 0 = \sqrt{5}$	
d) :: $3 x^2 + 3$	$y^2 + 3z^2 - 3x - 9y - 6z + 3 = 0$	÷(3)
$\therefore x^2 + y^2 + z^2$	$x^2 - x - 3y - 2z + 1 = 0$	
\therefore the center i	$\operatorname{is}\left(\frac{1}{2},\frac{3}{2},1\right)$	
$\therefore \mathbf{r} = \sqrt{\left(\frac{1}{2}\right)^2}$	$+\left(\frac{3}{2}\right)^2 + (1)^2 - 1 = \sqrt{\frac{10}{4}} = \sqrt{\frac{10}{2}}$	

Find the equation of the sphere whose center is (a) (-5, 1, -2) and touches xy plane (b) (0, 4, -2) and touches xz plane

(a) r = |-2| = 2 units of length \therefore the equation of the sphere is $(x+5)^2 + (y-1)^2 + (z+2)^2 = 4$ (b) r = |4| = 4 units of length \therefore the equation of the sphere is $x^2 + (y-4)^2 + (z+2)^2 = 16$

Find the equation of the sphere whose radius is 2 units and touches the cartesian planes given that the coordinates of the center of the sphere are positive.

The center is (2, 2, 2) and are r = 2The equation of the sphere is $(x-2)^2 + (y-2)^2 + (z-2)^2 = 4$

To find the intersection point of the x-axis and the sphere, put y = 0, z = 0 $\therefore (x - 2)^2 + 9 + 1 = 14$ $\therefore (x - 2)^2 = 4$ $\therefore x - 2 = 2$ or x - 2 = -2 X = 4 x = 0 $\therefore A (4, 0, 0)$ B = (0, 0, 0) $\therefore AB = 4$ units of length

The equation of two sphere are $(x - 2)^2 + (y + 4)^2 + (z - 2)^2 = 1$ an $(x + 4)^2 + (y - 4)^2 + (z - 2)^2 = 4$, find the distance between their centers and show that they are not intersecting

$$M_{1} = (2, -4, 2), \qquad M_{2} = (-4, 4, 2)$$

$$r_{1} = 1, \qquad r_{2} = 2$$

$$r_{1} + r_{2} = 3, \qquad r_{2} - r_{1} = 1$$

$$M_{1} M_{2} = \sqrt{(2 + 4)^{2} + (-4 - 4)^{2} + (2 - 2)^{2}} = 10 \text{ units}$$

$$\therefore M_{1} M_{2} > r_{1} + r_{2}$$

$$\therefore \text{ the two sphere are not intersecting}$$

EXAMPLE If the two-sphere to and $(x + 1)^2 + (y - y)^2$	ouching each other are $(x - 1)^2 + y^2 + (z - 3)^2 = 16$ 2) ² + (z - n) ² = 25, find the value of n.
	SOLUTION
$M_1 = (1, 0, 3), r_1 = 4$ and	$M_2 = (-1, 2, n), r_2 = 5$
$M_1 M_2 = \sqrt{(1 + 1)^2 + (0 - 2)^2}$	$(n^2 + (3 - n)^2) = \sqrt{8 + (3 - n)^2}$
\therefore the two sphere touch each othe	r
Externally o	r Internally
$\mathbf{M}_1 \ \mathbf{M}_2 = \mathbf{r}_1 + \mathbf{r}_2$	$\mathbf{M}_1 \ \mathbf{M}_2 = \mathbf{r}_1 - \mathbf{r}_2$
$\sqrt{8+(3-n)^2}=9$	$\sqrt{8 + (3 - n)^2} = 1$
$\therefore 8 + (3 - n)^2 = 81$	$8 + (3 - n)^2 = 1$
$\therefore (3-n)^2 = 73$	$(3-n)^2 = -7$
$\therefore 3 - n = \pm \sqrt{73}$	(x)
\therefore n = 3 ± $\sqrt{73}$	

EXAMPLE (20)

Find the equation of cross section (trace) of the sphere whose equation is $(x - 3)^2 + (y - 2)^2 + (z + 4)^2 = 25$ with xy-plane, find the area of the section

• every point on xy plane is in the form (x, y, 0)
Put z = 0 is the equation of the sphere
∴ (x - 3)² + (y - 2)² + 16 = 25
i.e. the equation of the crosse section is
(x - 3)² + (y - 2)² = 9
• r = $\sqrt{9} = 3$. the area of the section = Area of the circle
= πr^2 = $\pi (3)^2$ = 9 π squared units

S.B.2017	1) find the distance between the two point following :	nt A and B in each of the
	(a) A $(7, 0, 4)$, B $(1, 0, 0)$	$[2\sqrt{13}]$
	(c) A (1, 1, - 7), B (-2, -3, -7)	$[2\sqrt{13}]$
S.B.2017	2) find the coordinates of the mid-point of \overline{A}	<i>B</i> in each of the following
	(a) A (3, -1, 4), B (2, 0, -1)	$\left(\frac{5}{2},\frac{-1}{2},\frac{3}{2}\right)$
	(b) A (- 3, 5, 5), B (- 6, 4, 8)	$\left[\left(\frac{-9}{2},\frac{9}{2},\frac{13}{2}\right)\right]$
S.B.2017	3) if C (- 1 , 4, 0) is the mid-point of \overline{AB} coordinates of point A	where B (4, -2, 1), find the [(-6, 10, -1)]
~ ~ ~ ~ ~ ~		
S.B.2017	4) find the equation of the sphere if	1 1 7
	(a) the center is point $(3, -1, 2)$, and its radiu	is length is $\sqrt{7}$ = $(3)^2 \pm (y \pm 1)^2 \pm (z \pm 2)^2 = 21$
	(b) $(3, 4, -3)$, $(0, 2, 1)$ are terminals of the d	(y + 1) + (z - 2) = 2 iameter.
	$\left[\left(x-\frac{3}{2}\right)^2\right]$	$+(y-3)^2 + (z+1)^2 = \frac{29}{4}$
	(c) the center is point (1, -6, 1)and passe thr [(x -	ough point (2, -1, 5) $1)^{2} + (y + 6)^{2} + (z - 1)^{2} = 42$
S.B.2017	5) find the center and the radius length of	of the sphere in each of the
	IOHOWING (a) $x^2 + y^2 + z^2 - 9$	$[(0 \ 0 \ 0) \ 3]$
	(a) $x^{2} + y^{2} + z^{2} - 2x + 4y = 0$	[(0, 0, 0), 5] $[(1, -2, 0), \sqrt{5}]$
S.B.2017	6) find the equation of the sphere whose r the cartesian planes (given that the three of positive . $[(x + x)]$	adius is 3 units and touches coordinates of the center are $(-3)^2 + (y - 3)^2 + (z - 3)^2 = 9$
S B 2017	7) if x-axis cuts the sphere $(x - 2)^2 + (x + 3)^2$	$(x_{1})^{2} + (x_{2})^{2} - 14$ at the two
5.D .2017	points A and B find the length of \overline{AB}	(4)
S.B.2017	8) if all point in the space in the form of (x equation is $z = 0$, find the equation of the p are in the form (x, y, 2)	(x, y, 0) lie in xy plane whose blane in which all of its point [z = 2]

Choose the following:

S.B.2017	9) the straight li	nes $\overleftarrow{x}\overrightarrow{x}$ ' and $\overleftarrow{z}\overrightarrow{z}$	' form the coordin	nate plane whose
	(a) $x = 0$	(b) y = 0	(c) $z = 0$	(d) $y = 2$
S.B.2017	10) the distance unit length.	between point (3,	, -1 , 2) and the car	tesian xz plane is
	(a) 3	(b) -1	(c) 2	(d) 1
S.B.2017	11) xy plane ad y	z plane intersect a	t	(d) z-axis
	(u) ongin point	(0) X uxis	(c) y axis	
S.B.2017	12) the length of axis is Unit	the perpendicular length.	line drawn from po	int (-2, 3, 4) to x-
	(a) 2	(b) 3	(c) 5	(d) 4
S.B.2017	13) the coordinate are $(-3, 2, 4)$, $(5, -3)$	es of the mid-poin 1, 8) are	t of the line segmen	t whose terminals
	(a) $(1, \frac{3}{2}, 6)$	(b) (2, -1, 4)	(c) (8, -1, 4)	(d) $\left(1, -\frac{3}{2}, 2\right)$
S.B.2017	14) the equation length is 5 units . (a) $x^2 + y^2 + z^2 =$ (b) $x^2 + y^2 + z^2 =$ (c) $(x - 5)^2 + (y - (d) x^2 + y^2 + z^2) =$	of the sphere who 5 0 $(5)^2 + (z - 5)^2 = 2$ 25	ose center is the orig	gin and the radius
S.B.2017	15) the equation of (a) $(x-2)^2 + (y + (y + (b))(x-2)^2 + (y + (c))(x-2)^2 + (y + (c))(x-2)^2 + (y + (d))(x+2)^2 + (y - (d))$	of sphere with cen $(3)^2 + (z - 4)^2 = 4$ $(3)^2 + (z - 4)^2 = 9$ $(3)^2 + (z - 4)^2 = 1$ $(3)^2 + (z + 4)^2 = 1$	ter (2, -3, 4) and tou 6 6	iches xy plane is
S.B.2017	16) if the point A lies on y-axis, give	A (-1, -1, 2), find wen that $AB = \sqrt{1}$	the coordinates of t $\overline{4}$ units of length . [(0, 2)]	he point B which 2, 0) or (0, -4, 0)]
S.B.2017	17) ABC is triang given that the mic	gle in which A (-4 1-point of AC lies	4, -1, 2), B (3, 5, - 5 on y-axis and mid-p	b) find the point C point of \overline{BC} lies in

S.B.2017	18) if the poin prove that this	t (7, 1, 3), (5, 3, k), triangle is isosceles	(3, 5, 3) are the vertie, then find the value of	ces of triangle, f k which make
	the triangle equ	uilateral.		$[3 \pm 2\sqrt{6}]$
S.B.2017	19) if $A \in x$ -a mid-point of \overline{A} coordinates of	xis, B ∈ y-axis, C \overline{AB} and point (0, -1, the mid-point of \overline{AC}	∈ z-axis and if point (2) is the mid-point o	(1, -1, 0) is the of \overline{BC} , find the [(1, 0, 2)]
S.B.2017	20) if $(x - 2)^2$ 4 are the equat of the two sphe	+ $(y + 4)^2 + (z - 2)^2$ tions of two sphere, teres and show that the	= 1 and $(x + 4)^2 + (y - find the distance betwthe two sphere do not in$	$(4)^2 + (z - 2)^2 =$ ween the centers intersect . [10]
S.B.2017	21) if the two $(z - k)^2 = 25$	spheres $(x - 3)^2 + y^2$ are tangential, find	$(z - 3)^2 = 16$ and (x the value of k	$(x + 1)^2 + (y - 4)^2$ [-4 or 20]
MOE 2017	22) if a sphere respectively ar of the sphere	touches the planes \overline{AD} is a diameter	xz, xy and yz at the point where D (3, 6, 3), fi $[(x-3)^2 + (y-3)^2]$	points A,B and C nd the equation $(z^2 + (z - 3)^2 = 9]$
S.B.2017	23) if A (7, -1, (a) 10	8) and B (11, 2, - 4) (b) 11	, then $AB = \dots c_1$ (c) 12	m (d) 13
S.B.2017	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$x^{2} + 4x - 6y + 8z + 4$ h = cm (b) 10	= 0 is an equation of (c) 15	a sphere whose (d) 20
	(u) 5	(0) 10	(0) 15	(d) 20
S.B.2017	25) if A (7, -1, (a) 10	8) and B (11, 2, - 4) (b) 11	, then $AB = \dots $ cr (c) 12	m (d) 13
S.B.2017	26) $x^2 + y^2 + z$ diameter lengt	$h^{2} + 4x - 6y + 8z + 4$ $h = \dots cm$	= 0 is an equation of	a sphere whose
	(a) 5	(b) 10	(c) 15	(d) 20
S.B.2017	27) if $x^2 + y^2$ whose center is	$+ z^{2} + 6x - 4y + 10$ s M, then M =	Dz - 8 = 0 is the equation	tion of a sphere
	(a) (-3, 2, -5)	(b) (4, -2, -5)	(c) (-3, -2, -5)	(d) (3, , 25)
S.B.2017	28) if (x, y, z) 13), then x + y	is the mid-point of $A + z = \dots$	AB, where A (-4, 0, 5) and B (-2, 4, -
	(a) - 5	(b) -6	(c) 3	(d) 4

S.B.2017	29) the standard 2, 1) and its radii (a) $(x + 3)^2 + (y)$ (b) $(x + 3)^2 + (y)$ (c) $(x - 3)^2 + (y)$ (d) $(x - 3)^2 + (y)$	I from of the equation is length equals = $(-2)^2 + (z + 1)^2 = 5$ $(-2)^2 + (z + 1)^2 = 2$ $(+2)^2 + (z - 1)^2 = 2$ $(+2)^2 + (z - 1)^2 = \sqrt{2}$	on of the sphere wl 5 cm is 5 5 5	nose center is (3, -
MOE 2017	30) the radius le equals Un	ength of the sphere its of length	$x^2 + y^2 + z^2 - 2x - $	-6y + 10z - 1 = 0
	(a) 3	(b) 4	(c) 5	(d) 6
MOE 2017	31) if A (2, -1, , of length	3) and B (-2, 2, -9), then the length $($	of $AB = \dots$ units
	(a) 15	(b) 13	(c) 12	(d) 10
MOE 2017	32) if the y-axislength equals 13(a) 6 units of lend(c) 24 units of lend	cuts the sphere wh cm in the two poin ngth ength	nose centre is (3, -4 nt A and B, then AE (b) 8 un (d) 26 u	, 12) and its radius 3 equals its of length nits of length
MOE 2017	33) the equation touched by the x (a) $(x - 1)^2 + (y - 1)^2$ (b) $(x - 1)^2 + (y - 1)^2$ (c) $(x - 1)^2 + (y - 1)^2$ (d) $(x - 1)^2 + (y - 1)^2$	n of the sphere with (xy plane is) $(+ 2)^{2} + (z + 5)^{2} = 1$ $(+ 2)^{2} + (z + 5)^{2} = 4$ $(+ 2)^{2} + (z - 5)^{2} = 2$ $(+ 2)^{2} + (z + 5)^{2} = 2$	hose center is M (5 5	1, -2 , -5) and is
MOE 2017	34) A sphere will length 10 cm su one of the cube the coordinate a (a) $x^2 + y^2 + z^2$ (b) $x^2 + y^2 + z^2$ (c) $x^2 + y^2 + z^2$ (d) $x^2 + y^2 + z^2$	hose centre is M is uch that the sphere vertices is the originate xes, then the equat xes, the equat xes	put inside a cube of touches all the fac n point and three of ion of the sphere is z + 50 = 0 z + 50 = 0 z + 50 = 0 z + 50 = 0	of an inner edge of es of the cube . if ther vertices lie on
MOE 2017	35) the length of $x^{2} + y^{2} + z^{2} - 6$ (a) 5	f the diameter of sp 5x + 8y - 4z + 4 = (b) 10	here whose equatio = 0 equals un (c) 15	n : its of length (d) 20

MOE 2017	36) if x-axis c	uts the sphere (x	$(-2)^2 + (y+3)^2 + (z-1)^2$	2 = 14 in the two
	point A and B	then the length o	f \overline{AB} = Units of l	ength
	(a) 2	(b) $\sqrt{14}$	(c) 4	(d) $\sqrt{28}$
MOE 2017	37) the two s equation is	straight lines \overleftarrow{XX}	', $\overleftarrow{Y}\overrightarrow{Y}$ ' form the carte	sian plane whose
	(a) $x = 0$	(b) $y = 0$	(c) $z = 0$	(d) $y = 2$
MOE 2017	38) the radius	of the sphere x 2	$+y^{2}+z^{2}-4x+6y-$	2 z + 5 = 0 equals
	(a) 1	(b) 2	(c) 3	(d) $\sqrt{19}$

Complete the following:

S.B.2017	39) the equation of the sphere whose center is $(2, -3, 1)$ and its radius length equals $2\sqrt{5}$ is
S.B.2017	40) $x^2 + y^2 + z^2 - 4 k x + 4 y - 8 z + 2k = 0$ is the equation of a sphere radius length $2\sqrt{5}$, then the value of $k = \dots$
S.B.2017	41) if C (-1, 9, -5) is the mid-point of AB, where A $(k - 2, -1, m + 3)$ and B $(2, n - 7, -2)$, then $k + m - n = \dots$
S.B.2017	42) the radius length of the sphere $x^2 + y^2 + z^2 - 4x - 6y + 8z + 4 = 0$ equals
S.B.2017	43) the center of the sphere $x^2 + y^2 + z^2 + 8x - 12y + 2z + 1 = 0$ is
S.B.2017	44) the length of the perpendicular drawn from the point (-2, - 3, 1)to the x-axis equals
S.B.2017	45) the standard form of the equation of the sphere whose center is (3, 4, - 5) and touches yz-plane is
S.B.2017	46) the radius length of the sphere $(x - 2)^2 + (y + 4)^2 + (z - 5)^2 = 64$ equals
S.B.2017	47) the radius length of the sphere: $x^2 + y^2 + z^2 + 2x - 2y - 4z - 3 = 0$ equals

The vector :

is a directed line segment determined by a magnitude and direction

* Position vector in space :

the position vector of the point A (A_x, A_y, A_z) with respect to the origin point 0(0,0,0) is the directed line segment whose starting point is the origin point and its end point is the point A

* the position vector of the point A is denoted by $\vec{A} = (A_x, A_y, A_z)$

* A_x is the component of \vec{A} in direction of x - axis

* A_y is the component of \vec{A} in direction of y - axis

* A_z is the component of \vec{A} in direction of z - axis

The norm of vector :

is the length of the directed line segment that represents this vector

*If
$$\vec{A} = (A_x, A_y, A_z)$$
 then $\|\vec{A}\| = \sqrt{(A_x)^2 + (A_y)^2 + (A_z)^2}$

(from rule of distance between two points)

If $\vec{A} = (2, -1, 3)$, $\vec{B} = (0, 4, -3)$ then * component of \vec{A} in direction of x - axis is 2 * component of \vec{B} in direction of z - axis is - 3 $\|\vec{A}\| = \sqrt{4 + 1 + 9} = \sqrt{14}$ $\|\vec{B}\| = \sqrt{0 + 16 + 9} = \sqrt{25} = 5$ * the vector \vec{B} lies in the coordinate plane yz

* the vector *B* lies in the coordinate plane yz

(component of \vec{B} in direction of x - axis vanishes).

$$\|\vec{A}\| + \|\vec{B}\| = \sqrt{1 + 16 + 4} + \sqrt{9 + 1 + 0} = \sqrt{21} + \sqrt{10}$$

If $\vec{A} = (-1, 4, 2), \vec{B} = (3, 1, 0)$ find : a) $A_x + B_y$ b) $\|\vec{A}\| + \|\vec{B}\|$
b) $\|\vec{A}\| + \|\vec{B}\| = \sqrt{1 + 16 + 4} + \sqrt{9 + 1 + 0} = \sqrt{21} + \sqrt{10}$

Adding 3D vectors:

* if $\overline{A} = (A_x, A_y, A_z), \overline{B} = (B_x, B_y, B_z)$ then $\overline{C} = \overline{A} + \overline{B}$ $\overline{C} = (A_x + B_x, A_y + B_y, A_z, + B_z)$ $\overline{C} = (C_x, C_y, C_z)$

For example : If $\overline{A} = (-2,3,1)$, $\overline{B} = (0, -2,4)$ then $\overline{A} + \overline{B} = (-2,1,5)$ If $\overline{A} = (4, -4,0)$, $\overline{B} = (-1,5,2)$ then $\overline{A} + \overline{B} = (3,1,2)$

* *Properties of adding 3D vectors : For any two vectors A, B E R3 then:* 1) Closure property: $\overline{A} + \overline{B} \in \mathbb{R}^3$ 2) Commutative property: $\overline{A} + \overline{B} = \overline{B} + \overline{A}$ 3) Associative property: $(\overline{A} + \overline{B}) + \overline{C} = \overline{A} + (\overline{B} + \overline{C})$ 4) The neutral (identity) element over addition is the zero vector $\overline{0} = (0,0,0)$ in \mathbb{R}^3 where $\overline{A} + \overline{0} = \overline{0} + \overline{A} = \overline{A}$ 5) The additive inverse for any vector $\overline{A} = (A_x, A_y, A_z) \in \mathbb{R}^3$ is - $\overline{A} = (-A_x, -A_y, -A_z) \in \mathbb{R}^3$, where $\overline{A} + (-\overline{A}) = (-\overline{A}) + \overline{A} = \overline{0}$

* Multiplying a vector by a scalar (real number):

If $\overline{A} = (A_x, A_y, A_z) \in \mathbb{R}^3$ and $K \in \mathbb{R}$, then: $K \overline{A} = K (A_x, A_y, A_z) \in \mathbb{R}^3 \rightarrow K\overline{A} = (KA_x, KA_y, KA_z) \in \mathbb{R}^3$ for example:

 $3(2, -1, 4) = (6, -3, 12), \frac{1}{2}(4, 9, 6) = (2, \frac{9}{2}, 3), -2(1, -3, -4) = (-2, 6, 8)$

Properties of multiplying a vector by a scalar (real number):

If $\overline{A} \ \overline{B} \in \mathbb{R}^3$ and k, $l \in \mathbb{R}$ then 1) Distributive property: $k \ (\overline{A} + \overline{B}) = k\overline{A} + k \overline{B}$, $(k+l) \overline{A} = k\overline{A} + l\overline{A}$ 2) Associative property: $k \ (l\overline{A}) = l \ (k\overline{A}) = (kl) \overline{A}$

If
$$\bar{A} = (-1, 5, 2)$$
, $\bar{B} = (4, -1, 3)$, find:
1) $2\bar{A} - 3\bar{B}$ 2) if $3\bar{A} + 2\bar{C} = 2\bar{B}$ find \bar{C}
(1) $2\bar{A} - 3\bar{B} = 2(-1,5,2) - 3(4,-1,3) = (-2, 10,4) - (12, -3,9) = (-14,13,-5)$
2) $3\bar{A} + 2\bar{C} = 2\bar{B}$
 $2\bar{C} = 2\bar{B} - 3\bar{A} = 2(4,-1,3) - 3(-1,5,2) = (8, -2,6) - (-3,15,6)$
 $= (11,-17,0) \div \bar{C} = \left(\frac{11}{2}, -\frac{-17}{2}, 0\right)$

Equality of two vectors:

If $\vec{A} = (A_x, A_y, A_z) \& \vec{B} = (B_x, B_y, B_z)$, Then $\vec{A} = \vec{B}$ If and only If: $A_x = B_x$, $A_y = B_y$, $A_z = B_z$

Find the values of 1, m and n which make $\vec{A} = (l - 4, m^2 - 3, 1)$ and $\vec{B} = (5.1, n^2)$ equal.

 $(\vec{A} = \vec{B})$, l - 4 = 5, $\therefore l = 9 \& m^2 - 3 = 1$, $m^2 = 4$, $\therefore m = \pm 2$ $n^2 = 1$, $\therefore n = \pm 1$

if
$$(2x + 1,5, k + 4) = (-1, y^2 - 4, x + 1)$$
 find x, y, k?

$$2x + 1 = -1, 2x = -2, \therefore x = -1, y^2 - 4 = 5, y^2 = 9, \therefore y = \pm 3, k + 4 = x + 1 = 0, \therefore k = -4$$

* The Unit Vector : Is a vector which its norm equals one length unit.

 $\bar{A} = \left(\frac{-3}{13}, \frac{4}{13}, \frac{12}{13}\right)$ is a unit vector as: $\|\bar{A}\| = \sqrt{\frac{9}{169} + \frac{16}{169} + \frac{144}{169}} = \sqrt{\frac{169}{169}}$ $\therefore \|\bar{A}\| = 1$ unit length

Show which of the following vectors represents a unit vector:

$$\bar{A} = \left(\frac{2}{3}, -\frac{1}{3}, -\frac{2}{3}\right), \ \bar{B} = \left(\frac{1}{5}, \frac{4}{5}, -\frac{\sqrt{5}}{5}\right)$$

$$\|\bar{A}\| = \sqrt{\frac{4}{9} + \frac{1}{9} + \frac{4}{9}} = 1 \text{ Unit length }, \ \therefore \bar{A} \text{ is a unit vector}$$

$$\|\bar{B}\| = \sqrt{\frac{1}{25} + \frac{16}{25} + \frac{5}{25}} = \sqrt{\frac{22}{25}} \text{ Unit length }, \ \therefore \bar{B} \text{ is not a unit vector}$$

The fundamental unit vectors $(\hat{i}, \hat{j}, \hat{k})$:

is a directed segment whose starting point is the origin point and its norm one length unit and its direction is the positive direction of the coordinate axes (x,y,z) respectively.

$$\hat{\imath} = (1,0,0), \hat{\jmath} = (0,1,0), , \hat{k} = (0,0,1)$$

* Expressing the 3D vector in terms of the fundamental unit vectors.

 $\bar{A} = (A_x, A_y, A_z) \in \mathbb{R}^3$ $\bar{A} = (A_x, 0, 0) + (0, A_y, 0) + (0, 0, A_z)$ $\bar{A} = A_x (1, 0, 0) + A_y(0, 1, 0) + A_z(0, 0, 1)$ $\bar{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$

- $\|\vec{A}\| + \|\vec{B}\| = \sqrt{4 + 9 + 1} = \sqrt{1 + 4 + 0} = \sqrt{14} + \sqrt{5}$
- deduction: $\sqrt{27} + \sqrt{14} + \sqrt{5}$, $\|\vec{A} + \vec{B}\| \neq \|\vec{A}\| + \|\vec{B}\|$

 $\begin{aligned} \bar{A}\bar{A} &= (5.-3,-1), \text{ B} = (3,0,-2) \text{ a) } 3\text{A} - 5\text{B} = 3(5,-3,-1) - 5(3,0,-2) = (15,-9,-3) - (15,0,-10) \\ &= (0, -9,7) = -9\,\hat{j} + 7\hat{k} \\ \text{b) } \bar{A} - \bar{B} &= (5,-3, -1) - (3,0,-2) = (2, -3,1) \\ & \left\| \vec{A} - \vec{B} \right\| = \sqrt{4+9+1} = \sqrt{14} \text{ Unit length.} \end{aligned}$

Expressing the directed line segment in the space in terms of the coordinates of its ends.

Let A, B be two points in the space, their position vectors(with respect to the origin point) are \overrightarrow{OA} and \overrightarrow{OB} respectively:

According to the triangle rule $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$ $\overrightarrow{OA} = \overrightarrow{A} - \overrightarrow{O} = \overrightarrow{A} & \overrightarrow{OB} = \overrightarrow{B} - \overrightarrow{O} = \overrightarrow{B}$ $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{B} - \overrightarrow{A}$

